Superelasticity and fatigue in oligocrystalline shape memory alloy microwires

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires

We report a strategy to significantly improve the ductility and achieve large superelastic and shape memory strains in polycrystalline Cu–Al–Ni shape memory alloys that are normally brittle. We use a liquid-phase Taylor wire forming process to obtain microwires of 10–150 m diameter with a bamboo grain structure. The reduction of grain boundary area, removal of triple junctions, and introduction...

متن کامل

Shape memory effect and superelasticity in a strain glass alloy.

The shape memory effect and superelasticity are usually found in alloys exhibiting spontaneous martensitic transformation. Thus it is hard to imagine that such interesting effects can appear in a system without a martensitic transformation. In this Letter we show shape memory and the superelasticity effect in a nonmartensitic Ti48.5Ni51.5 alloy, which has no martensitic transformation but under...

متن کامل

Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites

An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young's modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity ...

متن کامل

Shape Memory Properties in Cu-Zn-Al Alloy

In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...

متن کامل

Shape Memory Properties in Cu-Zn-Al Alloy

In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Materialia

سال: 2012

ISSN: 1359-6454

DOI: 10.1016/j.actamat.2011.09.054