Superelasticity and fatigue in oligocrystalline shape memory alloy microwires
نویسندگان
چکیده
منابع مشابه
Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires
We report a strategy to significantly improve the ductility and achieve large superelastic and shape memory strains in polycrystalline Cu–Al–Ni shape memory alloys that are normally brittle. We use a liquid-phase Taylor wire forming process to obtain microwires of 10–150 m diameter with a bamboo grain structure. The reduction of grain boundary area, removal of triple junctions, and introduction...
متن کاملShape memory effect and superelasticity in a strain glass alloy.
The shape memory effect and superelasticity are usually found in alloys exhibiting spontaneous martensitic transformation. Thus it is hard to imagine that such interesting effects can appear in a system without a martensitic transformation. In this Letter we show shape memory and the superelasticity effect in a nonmartensitic Ti48.5Ni51.5 alloy, which has no martensitic transformation but under...
متن کاملOrigin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites
An open question is the underlying mechanisms for a recent discovered nanocomposite, which composed of shape memory alloy (SMA) matrix with embedded metallic nanowires (NWs), demonstrating novel mechanical properties, such as large quasi-linear elastic strain, low Young's modulus and high yield strength. We use finite element simulations to investigate the interplay between the superelasticity ...
متن کاملShape Memory Properties in Cu-Zn-Al Alloy
In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...
متن کاملShape Memory Properties in Cu-Zn-Al Alloy
In this research a Cu-Zn-Al alloy is produced by melting the raw materials in an electric resistance furnace and then pouring it into a steel mould. The optimum way to achieve the final analysis in the hypo-eutectoid range is determined and the influence of the alloying element, Ti on the grain size and the shape memory properties of the samples are investigated. Solution treatment (done at 850...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Materialia
سال: 2012
ISSN: 1359-6454
DOI: 10.1016/j.actamat.2011.09.054